JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

1st INTERNAL EXAMINATION – 2021- 2022 SEM: IV SUBJECT: MATHEMATICS PAPER: C 9 T (MULTIVARIATE CALCULAS)

Date: 27/04/2022 Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

01. Verify whether $\lim_{(x,y)\to(0,1)} tan^{-1} \left(\frac{y}{x}\right)$ is exists or not.

02. Find the repeated limits of the function $f(x, y) = \frac{x-y}{x+y}$ at the origin.

03. Investigate the continuity at (0,0) of the function $f(x,y) = \frac{x^3 + y^3}{x - y}, x \neq y$ = 0, x = y

04. If $f(x, y) = \sqrt{|xy|}$, find $f_x(0,0)$ and $f_y(0,0)$.

05. Show that the function f(x,y) = |x| + |y| is not differentiable at the origin.

06. Show that $z = f(x^2y)$, where f is differentiable, satisfies $x\left(\frac{\partial z}{\partial x}\right) = 2y\left(\frac{\partial z}{\partial y}\right)$.

07. Find all the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.

08. In what direction from the point (1,3,2) is the directional derivative of $\Phi = 2xz - y^2$ is maximum? What is the magnitude of this maximum?

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION - 2021 - 2022 SEM: VI SUBJECT: MATHEMATICS PAPER: DSE3 (NUMBER THEORY)

Maximum Marks: 10 Date: 07/04/2022

ANSWER ANY FIVE OF THE FOLLOWING

- 1. For any integer n > 1 prove that $\tau(n) \le 2\sqrt{n}$, where $\tau(n)$ is number of positive divisor of n.
- 2. The Mangoldt function \wedge is defined by $n = p^k$, p is a prime and $k \ge 1$. $\wedge(n) = \log p ,$

otherwise

Prove that $\log_e n = \sum_{d|n} \wedge (d)$

- 3. Prove that if $n \ge 1$ then $\frac{(2n)!}{(n!)^2}$ is an even integer.
- 4. Prove that if gcd(a,n) = gcd(a-1,n) = 1, then $1 + a + a^2 + \dots + a^{\varphi(n)-1} \equiv 0 \pmod{n}.$
- 5. Prove that for n > 1, the average of the positive integers less than n and relatively prime to n is $\frac{n}{2}$.
- 6. Prove that $n|\varphi(2^n-1), \forall n > 1$.

- 7. If gcd(m,n) = 1, m > 2, n > 2 the prove that the integer mn has no primitive roots.
- 8. Prove that if p is an odd prime, then $x^2 \equiv -1 \pmod{p}$ is solvable iff $p \equiv 1 \pmod{4}$.

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2021- 2022 SEM: VI SUBJECT: MATHEMATICS PAPER: C 14 T (RING THEORY II & LINEAR ALGEBRA II)

Date: 06/04/2022 Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1. Let p be an irreducible element of a PID R. Prove that is a non-zero maximal ideal.
- 2. Find an ideal in the polynomial ring $\mathbb{Z}[x]$ which is not a principal ideal. Hence justify that $\mathbb{Z}[x]$ is not a PID.
- 3. Prove that $2 \& 1 + i\sqrt{5}$ are relatively prime in the integral domain $\mathbb{Z}[i\sqrt{5}.]$
- 4. Prove that every Euclidean domain is a PID.
- 5. Suppose that W is a finite dimensional vector space and that $T: V \to W$ is linear. Prove that $N(T^t) = (R(T))^0$ where $S^0 := \{ f \in V^* : f(x) = 0 \ \forall \ x \in S \}$ For every subset S of V.
- 6. Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.
- 7. Let V be a finite dimensional vector space, and define $\varphi: V \to V^{**}$ by $\varphi(x) = \widehat{x}$. Prove that φ is an isomorphism.
- 8. Prove that annihilating polynomial for a square matrix always exists.

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2021- 2022 SEM: VI SUBJECT: MATHEMATICS PAPER: C 13 T (METRIC SPACE & COMPLEX ANALYSIS)

Date: 06/04/2022 Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 01. Investigate the convergence of the sequence in (R, d_u) $\{x_n\}$, where $x_n = 1 \frac{1}{n}$, $n \in N$. [The symbols have their usual meaning]
- 02. Let (X, d) be a metric space and $\{x_n\}$ and $\{y_n\}$ are two convergent sequences converges to x and y respectively. Prove that the sequence $\{d(x_n, y_n)\}$ is also converges to d(x, y).
- 03. Let X be a non empty set and $d_1 \& d_2$ are two equivalent metrics on X. If $\{x_n\}$ is a Cauchy sequence in (X, d_1) then prove that $\{x_n\}$ is also a Cauchy sequence in (X, d_2) .
- **04.** Let (X, d) be a metric space and A, B are two non empty disjoint closed subsets of X. Prove that $f: (X, d) \to R$ defined as –

 $f(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in B \end{cases}$

is a continuous function.

- **05.** Show that the Complex-Valued function $f(z) = 3z + z^2$ is Univalent in Δ , where Δ is an open disk.
- 06. Discuss the Continuity of Complex-Valued function

$$f(z) = \frac{\overline{z}}{z} \ z \neq 0$$
$$= 0 \ z = 0$$

at the origin.

- 07. Show that f(z) = Rez is nowhere differentiable in \mathbb{C} .
- **08.** Let $f(z) = x^2 + iy^2$. Is f(z) is analytic at the origin?

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2021- 2022 SEM: I SUBJECT: MATHEMÁTICS PAPER: C 1 T (CALCULUS, GEOMETRY & DIFFERENTIAL EQUATIONS)

Date: 22/02/2022

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

1. Find $(y_n)_0$, if $y = \sin(a\sin^{-1}x)$.

2. If $y = tan^{-1}x$, prove that $(1 + x^2)y_2 + 2xy_1 = 0$ and deduce that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Hence determine $(y_n)_0$.

3. Solve $e^x \cos y dy + (e^x \sin y + 2x) dx = 0$.

4. Solve $\frac{dy}{dx} + 4xy = 8x$.

5. Choose a new origin (h, k) without changing the direction of the axes such that the equation $5x^2 - 2y^2 - 30x + 8y = 0$ may reduce to the form $aX^2 + bY^2 = 1$.

6. Prove that if the tangent at any point P of a conic meets the directrix in K, the angle KSP is a right angle.

7. Find the centre and the radius of the circle given by 2x - 3y + 6z = 62, $x^2 + y^2 + z^2 - 4x + 2y - 2z - 58 = 0$.

8. Evaluate $\int_0^{\frac{\pi}{4}} \sin^4 x dx$ By using Reduction Formula.

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION - 2021 - 2022 SEM: I SUBJECT: MATHEMATICS PAPER: C 2 T (ALGEBRA)

Date: 03/03/2022

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

1. If a,b, and c are three positive real numbers greater than 1, then show that

 $abc + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} > a + b + c + \frac{1}{abc}$ 2. Apply Descarte's Rule of sign to find the nature of the roots of the equation –

 $2x^4 + 3x^2 - 4x - 1 = 0$

- 3. Let $k > 1 \& 2^k 1$ is a prime. If $n = 2^{k-1}(2^k 1)$ then show that n is a perfect number.
- 4. If gcd(a,b) = 1 then Prove that $gcd(a^2,b^2) = 1$.
- 5. Solve the system of equations x + 2y + z = 1

3x + y + 2z = 3x + 7y + 2z = 1

- 6. Examine if the set $S = \{(x, y, z) \in R^3 : 2x y + 3z = 0\}$ is a subspace of R^3 .
- 7. Determine k so that the set $S = \{(k, 3, 1), (2, k, 0), (1, 2, 1)\}$ is linearly independent in \mathbb{R}^3 .
- 8. Find a basis for the vector space \mathbb{R}^3 that contains the vectors (1,0,1) and (1,1,1).